Beberapa Pengertian Istilah Pencemaran Udara

May 30, 2010 § 2 Comments

  1. Pencemaran udara adalah masuknya atau dimasukkannya zat, energi, dan/atau komponen lain ke dalam udara ambien oleh kegiatan manusia, sehingga mutu udara ambien turun sampai ke tingkat tertentu yang menyebabkan udara ambien tidak dapat memenuhi fungsinya;
  2. Pengendalian pencemaran udara adalah upaya pencegahan dan/atau penanggulangan pencemaran udara serta pemulihan mutu udara;
  3. Sumber pencemar adalah setiap usaha dan/atau kegiatan yang mengeluarkan bahan pencemar ke udara yang menyebabkan udara tidak dapat berfungsi sebagaimana mestinya; « Read the rest of this entry »
Advertisements

Gaussian Plume Dispersion Models

March 27, 2010 § Leave a comment

Model dispersi pencemar biasanya digunakan untuk menentukan perkiraan besarnya konsentrasi maksimum Cmax ¬ searah angin dan jarak Cmax tersebut dari sumber.
Secara sederhana, langkah yang digunakan dalam salah satu model dispersi, seperti Gaussian Dispersion Model adalah sebagai berikut:
1. Menghitung plume rise pada kondisi meteorologi tertentu (h)
2. Menghitung tinggi efektif stack dengan menjumlahkan nilai h dengan tinggi stack
3. Menghitung tinggi efektif ini dalam model dispersi untuk menghitung konsentrasi maksimum dan jarak terjadinya konsentrasi maksimum tersebut pada arah angin tertentu
4. Menggambar isoplet konsentrasi
5. Menentukan titik sampling
Untuk menentukan konsentrasi parameter ambient dapat ditentukan dengan menggunakan rumus dispersi gauss yang menggunakan prinsip distribusi normal yang mendekati model penyebaran zat pencemar di udara. Koordinat Gaussian Plume dapat dilihat pada gambar dibawah ini.

Gambar Koordinat Gaussian Plume
Pemodelan dengan dispersi gauss dengan formula:

C = konsentrasi pencemar (µg/m3 atau ppm)
Q = laju emisi pencemar (gr/detik)
µ = kecepatan angin (m/detik)
σy = koefisien dispersi horizontal (m)
σz = koefisien dispersi vertikal (m)
y = jarak arah sumbu y
z = jarak arah sumbu z
H = ketinggian stack efektif

Gas-gas Pencemar

March 22, 2010 § Leave a comment

Ozon termasuk kedalam pencemar sekunder yang terbentuk di atmosfer dari reaksi fotokimia NOx dan HC. Ozon bersifat oksidator kuat, karena itu pencemaran oleh ozon troposferik dapat menyebabkan dampak yang merugikan bagi kesehatan manusia. Laporan Badan Kesehatan Dunia menyatakan konsentrasi ozon yang tinggi (>120 µg/m3) selama 8 jam atau lebih dapat menyebabkan serangan jantung dan kematian atau kunjungan ke rumah sakit karena gangguan pada sistem pernafasan. Pajanan pada konsentrasi 160 µg/m3 selama 6,6 jam dapat menyebabkan gangguan fungsi paru-paru akut pada orang dewasa yang sehat dan pada populasi yang sensitif.
Emisi gas buang berupa NOx adalah senyawa-senyawa pemicu (precursor) pembentukan ozon. Senyawa ozon di lapisan atmosfer bawah (troposfer bawah, pada ketinggian 0 – 2000m) terbentuk akibat adanya reaksi fotokimia pada senyawa oksida nitrogen (NOx) dengan bantuan sinar matahari. Oleh karena itu potensi produksi ozon troposfer di daerah beriklim tropis seperti Indonesia sangat tinggi. Karena merupakan pencemar sekunder, konsentrasi ozon di luar kota –di mana tingkat emisi prekursor umumnya lebih rendah– seringkali ditemukan lebih tinggi daripada konsentrasi ozon di pusat kota.
Percepatan produksi ozon dibantu dengan kehadiran senyawa lain seperti NOx, hidrokarbon, CO dan senyawa-senyawa radikal yang juga diemisikan dari pembakaran bahan bakar fosil. Puncak pola fluktuasi harian ozon umumnya terjadi setelah terjadinya puncak konsentrasi NOx dan efek yang lebih merugikan terhadap kesehatan karena adanya kombinasi pencemar NOx dan ozon dapat terjadi. Diketahui bahwa kombinasi NOx-O3 dapat menyebabkan penurunan fungsi paru-paru (Hazucha, 1996).
Selain menyebabkan dampak yang merugikan pada kesehatan manusia, pencemar ozon dapat menyebabkan kerugian ekonomi akibat ausnya bahan atau material (tekstil, karet, kayu, logam, cat, dlsb), penurunan hasil pertanian dan kerusakan ekosistem seperti berkurangnya keanekaragaman hayati. Penelitian di negara Asia seperti Jepang dan Pakistan menunjukan bahwa pajanan ozon pada tanaman padi menyebabkan terhambatnya pertumbuhan dan berkurangnya hasil produksi (Agrawal et al., 1999).
Oksida nitrogen (NOx) adalah kontributor utama smog dan deposisi asam. Nitrogen oksida bereaksi dengan senyawa organic volatile membentuk ozon dan oksidan lainnya seperti peroksiasetilnitrat (PAN) di dalam smog fotokimia dan dengan air hujan menghasilkan asam nitrat dan menyebabkan hujan asam. Smog fotokimia berbahaya bagi kesehatan manusia karena menyebabkan kesulitan bernafas pada penderita asma, batuk-batuk pada anak-anak dan orang tua, dan berbagai gangguan sistem pernafasan, serta menurunkan visibilitas. Deposisi asam basah (hujan asam) dan kering (bila gas NOx membentuk partikel aerosol nitrat dan terdeposisi ke permukaan Bumi) dapat membahayakan tanam-tanaman, pertanian, ekosistem perairan dan hutan. Hujan asam dapat mengalir memasuki danau dan sungai lalu melepaskan logam berat dari tanah serta mengbah komposisi kimia air. Hal ini pada akhirnya dapat menurunkan dan bahkan memusnahkan kehidupan air. Oksida nitrogen diproduksi terutama dari proses pembakaran bahan bakar fosil, seperti bensin, batubara dan gas alam.
Gas sulfur dioksida (SO2) adalah gas yang tidak berbau bila berada pada konsentrasi rendah tetapi akan memberikan bau yang tajam pada konsentrasi pekat. Sulfur dioksida berasal dari pembakaran bahan bakar fosil, seperti minyak bumi dan batubara. Pembakaran batubara pada pembangkit listrik adalah sumber utama pencemaran SO2. Selain itu berbagai proses industri seperti pembuatan kertas dan peleburan logam-logam dapat mengemisikan SO2 dalam konsentrasi yang relatif tinggi.
SO2 adalah kontributor utama hujan asam. Di dalam awan dan air hujan SO2 mengalami konversi menjadi asam sulfur dan aerosol sulfat di atmosfer. Bila aerosol asam tersebut memasuki sistem pernafasan dapat terjadi berbagai penyakit pernafasan seperti gangguan pernafasan hingga kerusakan permanent pada paru-paru. Pencemaran SO2 pada saat ini baru teramati secara lokal di sekitar sumber-sumber titik yang besar, seperti pembangkit listrik dan industri, meskipun sulfur adalah salah satu senyawa kimia yang terkandung di dalam bensin dan solar. Data dari pemantauan kontinu pada jaringan pemantau nasional pada saat ini jarang mendapatkan SO2 sebagai parameter kritis, kecuali pada lokasi-lokasi tertentu. Lokasi pemantauan di Surabaya UAQi, Utara yang diduga menerima emisi jarak jauh dari sumber pencemar di daerah Gresik kadangkala mendapatkan SO2 sebagai parameter kritis (data from DLH Surabaya, 2005). KOnsentrasi SO2 yang relative tinggi juga ditemukan di sekitar lokasi industri di daerah Karawang, walaupun secara umum nilai rata-ratanya masih tetap berada di bawah ambang batas Baku Mutu Kualitas Udara (data BPLHD Jabar, 2004).

Where Am I?

You are currently browsing the Pencemaran Udara category at Indonesiaku sayang, Indonesiaku Malang.